Homework 3

P3.1.13 Determine $G_{e q}$ between terminals ' $a b$ ' in Figure P3.1.13, where G is a conductance.
Solution: G in series with $\frac{3}{2} G$ is $\frac{1 \times 1.5}{2.5}=0.6 G$. Two $0.6 G$ resistors are in parallel between the top and bottom nodes, giving a conductance of $1.2 G$. This resistor is in series with the $\frac{3}{2} G \frac{1.5 \times 1.2}{2.7} G=\frac{1.8 G}{2.7}=\frac{2 G}{3} ; G_{a b}=\frac{G}{2}+\frac{2 G}{3}=\frac{7}{6} G$.

Figure P3.1.13

P3.1.15 Determine $R_{e q}$ between terminals 'ab' in Figure P3.1.15, assuming all resistances are 1Ω.

Solution: R_{3} in parallel with R_{4} is 0.5Ω; this in series with R_{2} is 1.5Ω; this in parallel

Figure P3.1.15

Figure P3.1.15-1

P3.1.20 Determine $R_{\text {in }}$ in Figure P3.1.20.
Solution: The current in $R / 2$ is $2 V / R$. From KVL around the mesh in the middle, starting at node ' c ' and going CCW: $-V_{c a}-V_{T}+2 V_{T}=0$, which gives $V_{c a}=V_{T}$. The current through R in the middle branch is $V_{T / R}$ directed upwards. From KVL around the outer loop, starting at node 'b' and going CCW: $-2 V_{X}+V_{X}-V_{T}=$ 0 , which gives $V_{x}=-V_{T}$. The current in R on the RHS is $V_{T /} / R$ directed upwards. From KCL at node 'a': $I_{T}+V_{T} / R+V_{T} / R-2 V_{T} / R=0$. This makes $I_{T}=0$, so that $R_{\text {in }}=V_{T} / I_{T} \rightarrow \infty$.

Figure P3.1.20-1

P3.2.7 Determine V_{X} and I_{Y} in Figure P3.2.7.

Solution:

Figure P3.2.7

Figure P3.2.7-1

$$
\begin{aligned}
& \frac{40 \times 120}{40+120}=\frac{120}{4}=30 \Omega, \frac{60 \times 30}{60+30}=\frac{60}{3}=20 \Omega, \frac{20 \times 80}{20+80}=\frac{80}{5}=16 \Omega . \\
& V_{x}=\frac{16}{16+30+4} \times 25=\frac{16}{50} \times 25=8 \mathrm{~V} . \\
& I_{a}=\frac{25}{16+30+4}=\frac{25}{50}=0.5 \mathrm{~A}, I_{y}=\frac{120}{120+40} \times 0.5=\frac{3}{4} \times 0.5=0.375 \mathrm{~A} .
\end{aligned}
$$

P3.2.21 Determine V_{o} in Figure P3.2.21 using source transformation.
Solution: The 2 A and 3.6 A sources and their parallel source resistances are transformed to their equivalent voltage sources. The circuit reduces to a two-essential-node circuit can be analyzed by applying KCL. The circuit becomes as shown. The two voltage sources and

Figure P3.2.21 the two resistances can be combined to simplify the circuit further. The 24 V source in series with the 8Ω resistor can be transformed to its equivalent current source. The two 8Ω resistors are combined in parallel into a 4Ω resistor. The current in this resistor is $(1+3) \mathrm{A}$,
 so that $V_{O}=4(1+3)=16 \mathrm{~V}$.

P3.2.23 Determine V_{o} in Figure P3.2.23.
Solution: The current source in parallel with 10Ω is transformed to avoltage source of 2.5 V in series with 10Ω. In series with 5Ω this is 15Ω. The 2.5 V source in series with 15Ω is transformed to a current source of $2.5 / 15=1 / 6$ A in parallel with 15Ω. The circuit becomes as shown. It follows from current division that:

Figure P3.2.23

Figure P3.2.23-1
$I_{X}=\left(1 / 6-0.5 I_{X}\right) / 2$. Hence, $I_{X}=1 / 15 \mathrm{~A}$, which gives $V_{O}=2 / 3 \mathrm{~V}$.

P3.3.8 Determine I_{x} in Figure P3.3.8.
Solution: Initialize. All given circuit parameters and variables are entered. The nodes are labelled.

Simplify. The circuit is in a simple enough form.

Deduce. From Ohm; law, $V_{b d}=21 \times \mathrm{V}$; From KVL around the mesh 'bcdb', $I_{c b}=2\left(1-I_{X}\right) / 3$; if a closed surface is drawn as shown, $l_{a d}=2\left(1-I_{X}\right) / 3$; from KVL around the loop 'abda', $2\left(1-I_{x}\right) \times 3 / 3-4-2 I_{x}=0$, or $I_{x}=$ - 0.5 A.

Figure P3.3.8

Figure P3.3.8-1

P3.3.12 Determine V_{Y} in Figure P3.3.12.
Solution: Initialize. All given parameters and variables are entered. The nodes are labelled.
Simplify. The 30Ω and 20Ω resistors are combined into a 50Ω resistor. The 30Ω and 15Ω resistors are combined into a 45Ω resistor. The circuit is redrawn to show it more clearly as a

Figure P3.3.12 two-essential-node circuit.
Deduce. $V_{a b}=50 I_{x}$; The current in the 30 V and 45Ω branch is: $\frac{50 I_{X}-30}{45}=\frac{10 I_{X}-6}{9}$ A. 50Ω

From KCL at node 'a': $10-I_{X}$
$+2=\frac{10 I_{X}-6}{9}$, or $108-9 I_{x}=$

$10 I_{x}-6$, or $19 I_{x}=114$, which gives: $I_{x}=6$ A. It follows that $V_{a b}=$
$50 \times 6=300 \mathrm{~V}=V_{Y}-40 \times 2+40 \times 6$, or $V_{Y}=300-160=140 \mathrm{~V}$.

